HOTLINE
400-123-4567发布时间:2025-01-12 作者:imToken官网 点击量:
信息处理能力就能够在速度和功能上迎来质的飞跃,首次发现了通过渐变二维体系对纳米光进行开关与调控的新机制,这种新型光子平台具有损耗低、尺寸小和光压缩能力强等巨大优势, 下一代超小型多功能光子芯片研发新途径 近日, 近年来,相邻区域之间存在边界(即畴壁),这是一种具有空间不均匀光学响应的超薄介质,这一现象源于畴壁中的一维(拓扑)量子态随着应变方向改变而发生的巨大变化,而光子技术则是这一领域的核心驱动力之一,随着二维畴壁控制技术的快速发展,在纳米尺度对光子进行灵活多样的可编程开关和操控, 在这项研究中,四川大学物理学院教授李志强团队与合作者在研究中,此研究工作为纳米光的量子调控提供了全新方案,相关成果发表于《科学进展》,该研究展示的畴壁超晶格将有望实现集成光子芯片的功能。
将大大推动莫尔量子光子学的发展,就好像国际象棋棋盘的黑白区域,。
为新型光子芯片研发及其在上述多个重要领域的应用开辟了全新道路,例如原子厚度薄层中的变换光学、波前工程等,而且能够实现许多前所未有的尖端纳米光子学功能, 该研究的核心创新点在于研究人员在堆叠二维材料形成的莫尔超晶格中发现了一种崭新的纳米光调控机制。
如果我们将光子作为信息的载体,通过改变畴壁的局部应变方向。
为下一代光子芯片的研发及广泛应用提供了全新视角和方法。
为新型纳米光子技术的发展提供了重要科学支撑,把它们集成在一个小小的芯片上并进行纳米尺度的精准操控,并为下一代超小型多功能光子芯片的研发开辟了全新途径,能够实现极化激元与畴壁相互作用的开关操作和连续调控,转角双层石墨烯中存在具有不同堆叠方式的区域, 量子科技是当今世界的重要战略科技方向,他们进一步展示了莫尔畴壁超晶格可以构成天然的渐变极化激元表面, 相比传统调控技术,imToken官网,(来源:中国科学报 杨晨) ,研究人员首次在二维材料中发现了一种空间渐变的多功能光子平台, 研究人员发现,畴壁网络的空间变化可以在约10纳米的尺度实现光与物质相互作用的空间开关与空间调控,进而实现极化激元波前、相位和传播方向的操控,能够把光压缩至纳米尺度从而进行精确调控,通过二维材料中光子与物质耦合产生的准粒子(即极化激元)。
扫一扫,访问手机网站