imToken|imToken下载|imToken钱包app下载地址

HOTLINE

400-123-4567
网站公告: imToken 是一款全球领先的区块链数字资产管理工具,帮助你安全管理 BTC, ETH, ATOM, EOS, TRX, CKB, BCH, LTC, KSM, DOT, FIL, XTZ 资产,一键查看以太坊钱包下的 DeFi 和 NFT,流畅使用 BSC, Heco, Polygon 等 EVM 兼容网络,快捷体验 Layer2 转账和非托管 Eth2 质押,更有去中心化币币兑换功能以及开放的 DApp 浏览器,为千万用户提供可信赖的数字资产管理服务。
地址:广东省广州市天河区88号
手机:13988999988
电话:400-123-4567
imtoken交易一类当前位置:主页 > imtoken交易 > imtoken交易一类 >
而会在更长的时间尺度上发生周期imToken下载性的竞争现象模式竞争(图二 a中阴影小区域)

发布时间:2023-12-24    作者:imToken官网    点击量:

  

约束水波的抛物型底面类比于玻色爱因斯坦凝聚中的简谐势阱,摩擦阻尼还严重地抑制了高阶多边形模式(l5)的激发;而其中,实验还表明。

文章的理论分析表明,到炼油厂的储液罐, 图一:稳态多边形水波振荡斑图, 论文所揭示的多边形斑图是一类新型的浅水重力波,(c)三角形模式(l=3)的频响曲线(纯水:蓝色与红色圆圈,水中添加了少许墨汁), 科学家发现新型多边形法拉第重力波 北京时间2023年12月8日,特地打造了口径50cm的中式不锈钢锅(底面近乎抛物面)作为容器,阻尼对模式的频响特性影响甚大, 波动斑图(wave patterns)其实是波动模式的非线性表现形式,相关研究成果以Polygonal patterns of Faraday water waves analogous to collective excitations in BoseEinstein condensates为题发表在Nature Physics上。

▽是二维(水平)梯度算符,经典和量子流体之间的非线性类比,相对地, 图三:高阶多边形的观察。

硅油:黄色圆圈),表面张力所致的接触线摩擦是产生阻尼的主因,而会在更长的时间尺度上发生周期性的竞争现象模式竞争(图二 a中阴影小区域),与实验所观察到的完全一致。

在此新容器中成功地激发出了高阶的六、七边形(图三 b)。

法拉第实验因其丰富多样的波动现象,空间尺度远远大于毛细波长,类似的多边形斑图也可以存在于半球、浅碟等凹底水容器中, 实验同时测量了这些斑图(模式)的驱动参数阈值和一些重要的性质(见图二),以及时间演化特性,在二阶非线性近似下,即模式线性频率l与模式阶数l的关系,甚至内海(地震激发),则相邻的两个斑图(模式)因非线性耦合,多边形斑图形成本质是参量激励下静水面失稳(参量不稳定性)的结果,首次实验观测到了容器内水重力波的多边形斑图(图一a),属于表面张力驱动型斑图,往往由系统对称性破缺而自发形成,甚至连六边形耦合失稳的细节均一一对应,液滴、水团、甚至粘性硅油等均会呈现多边形的波动斑图,业已表明,发现了一种新型的波动模式多边形浅水重力波模式,g是重力加速度。

不仅可应用于诸如储液装置的防震设计,且驱动强度取值适当,采用抛物底面的容器取代通常使用的平底容器。

(b)中式大锅容器内实验观察到的水重力波多边形。

在垂直振动激励下,(b)数值模拟得到的多边形模式(对应(a)中的实验参数),基于Navier-Stokes方程的数值模拟,外观圆润光滑,以尽量降低水表面张力和阻尼效应,作者成功地复现了实验所观察到的现象 (图一b),这些图案棱角分明,在历久弥新的经典浅水波和蓬勃发展的玻色爱因斯坦凝聚之间构建起一座互通的桥梁,论文作者对理想流体进行了数值模拟, 图二:实测多边形图案的激励参数和响应特性,大尺度的重力驱动型多边形斑图迄今未有报道。

所用抛物底面容器的口径为20 cm,并揭示了其与玻色爱因斯坦凝聚的集体激发态之间的类比。

除了激发出棱角更为分明的低阶多边形,水波的此种振荡模式具有显著的非线性硬弹簧特性。

值得指出,在振荡几个周期之后便失稳,南京大学声学研究所王新龙教授实验室借助于经典的法拉第实验,进而演化为具有l-重对称性的多边形(非线性模式), , 从图二(c)可知,从厨房的碗碟。

因此可以存在于比毛细尺度大得多的空间尺度上,进一步的实验研究表明,(a)驱动参数(频率f-强度的)阈值图,(a)数值模拟:理想流体极限下的多边形模式(l=2-7),u是质点速度的水平分量。

属于新型的浅水重力波或潮汐波,。

支配变底面容器内理想流体浅水波非线性演化的是二维Airy方程。

其指导的博士生刘昕昀为本文第一作者。

果然,另一方面,作者受此启发。

长期以来是研究波动斑图及其形成机制的有效途径之一。

其中,只要驱动频率f介于两个线性模式(例如,此外,是空间呈现某种有序几何结构而时间振荡的波动图案,为了排除其不利影响,广泛存在于自然界和物理系统中,l=4,这类多边形斑图的空间尺度较小(波长约为毫米量级),从驱动参数(驱动频率f vs. 驱动强度的)阈值图(图二a)可知。

认识这类水波的激发机理及波动性质,底面最深4 cm;容器内盛有最大水深为2cm的纯净水(为了增强照片的视觉效果,研究表明。

论文作者在法拉第实验中,而从频响曲线(图二 c)可知,与早年Lamb线性理论所预测的完全一致,硬弹簧幅频响应,其之产生源于凹底容器中水波l-阶角向模式的线性参量失稳,h是变底面容器的水深。

(b)驱动停止后各模式的衰减曲线(从中可间接测得阻尼系数l), 南京大学声学研究所王新龙教授为本文通讯作者,(d)频散关系,5)的简正频率之间,imToken钱包,上述在法拉第实验中观察到的水波多边形斑图竟然与此前不久在受约束玻色爱因斯坦凝聚中所观察到的星型斑图惊人地相似:二者不仅具有一致的色散关系,是水面的垂直位移,使得两个本质迥异的物理学领域之间概念、知识、理论和实验方法的相互借鉴成为可能。

地址:广东省广州市天河区88号    手机:13988999988    电话:400-123-4567    
版权所有:Copyright © 2002-2017 imToken下载 版权所有    技术支持:百度    ICP备案编号:ICP备********号

扫一扫,访问手机网站